Behavior of railroad bearing due to temperature and load using LISA FEA
DOI:
https://doi.org/10.37367/jrtt.v1i1.1Keywords:
Bearing, Railroad, Stress, LISA, FEAAbstract
A very important element of railway is the rail bearing, different types of rail bearings that we know in Indonesia are wooden rail bearings, concrete rail bearings. In this study, the stress behavior that occurs in the two types of railway bearings due to the load and the occurring temperature effect is to be checked.
It was found that the stress occurring in bearings with different materials, namely concrete and wood, when the The nominal stress can be seen on the concrete bearing is 11.87 N/mm2, on the wooden material the bearing load is 10.41 N/mm2. As for the temperature effect, it looks similar to the temperature of 80 °C for each material, but it can be seen that the temperature effect spreads from the surface due to the friction between the railroad tracks and the railroad wheels.
References
AskOxford.com, “Definition of Train (noun) in Compact OED,” AskOxford.com, 2005. https://web.archive.org/web/20050526072449/http://www.askoxford.com/concise_oed/train?view=uk
S. Widi Astuti, W. Artha Wirawan, A. Zulkarnain, and D. Tri Istiantara, “Comparison of Energy Absorption and Pattern of Deformation Material Crash Box of Three Segments with Bilinear and Johnson Cook Approach,” J. Phys. Conf. Ser., vol. 1273, no. 1, 2019, doi: 10.1088/1742-6596/1273/1/012078.
B. Asngali, A. Susanto, M. F. Subkhan, I. Martinez, K. Yamada, and F. Majedi, “Static Analysis of Railway Axle using Finite Element Method and Monitoring of Railway Bearing Based on Vibration Analysis,” J. Phys. Conf. Ser., vol. 1845, no. 1, 2021, doi: 10.1088/1742-6596/1845/1/012037.
F. Dikmen, M. Bayraktar, and R. Guclu, “Determination of critical section of wagon axle by considering dynamic and safety factors,” Alexandria Eng. J., vol. 58, no. 2, pp. 611–624, 2019, doi: https://doi.org/10.1016/j.aej.2019.05.010.
T. Nagatomo and D. G. Toth, “Investigation of the bearing damage progression starting from cone creep of a railroad axle journal bearing,” Q. Rep. RTRI (railw. Tech. Res. Institute), vol. 47, no. 3, pp. 119–124, 2006, doi: 10.2219/rtriqr.47.119.
R. Guo, G. Yang, Z. Li, Z. Liu, and Y. Wei, “Statistical analysis on rolling contact fatigue in railroad axle bearing steel,” Fatigue Fract. Eng. Mater. Struct., vol. 42, no. 3, pp. 651–663, 2019, doi: 10.1111/ffe.12940.
N. S. P. Luna and D. Galar, TECHNICAL REPORT Inspection and Analysis of the Functioning of the Inspection and Analysis Bearings Used of on the Functioning Bearings. Lulea University of Technology, 2014.
C. Malla and I. Panigrahi, “Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques,” J. Vib. Eng. Technol., vol. 7, no. 4, pp. 407–414, 2019, doi: 10.1007/s42417-019-00119-y.
A. Lamari, “Rolling stock bearing condition monitoring systems,” no. October, p. 116, 2008, [Online]. Available: http://eprints.usq.edu.au/5886
J. Mathew and R. J. Alfredson, “The condition monitoring of rolling element bearings using vibration analysis,” J. Vib. Acoust. Trans. ASME, vol. 106, no. 3, pp. 447–453, 1984, doi: 10.1115/1.3269216.
S. Janjarasjitt, H. Ocak, and K. A. Loparo, “Bearing condition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal,” J. Sound Vib., vol. 317, no. 1–2, pp. 112–126, 2008, doi: 10.1016/j.jsv.2008.02.051.
G. Y. Luo, D. Osypiw, and M. Irle, “On-line vibration analysis with fast continuous wavelet algorithm for condition monitoring of bearing,” JVC/Journal Vib. Control, vol. 9, no. 8, pp. 931–947, 2003, doi: 10.1177/10775463030098002.
C. James Li and S. Y. Li, “Acoustic emission analysis for bearing condition monitoring,” Wear, vol. 185, no. 1–2, pp. 67–74, 1995, doi: 10.1016/0043-1648(95)06591-1.
H. Sadegh, A. N. Mehdi, and A. Mehdi, “Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm,” Tribol. Int., vol. 95, pp. 426–434, 2016, doi: 10.1016/j.triboint.2015.11.045.
S. Kumar, D. Goyal, and S. S. Dhami, “Statistical and frequency analysis of acoustic signals for condition monitoring of ball bearing,” in 7th International Conference of Materials Processing and Characterization, ICMPC 2017, 2018, vol. 5, no. 2, pp. 5186–5194. doi: 10.1016/j.matpr.2017.12.100.
M. Entezami et al., “Acoustic analysis techniques for condition monitoring of roller bearings,” in 6th IET Conference on Railway Condition Monitoring, RCM 2014, 2014, vol. 2014, no. CP631. doi: 10.1049/cp.2014.1012.
A. Choudhary, T. Mian, S. Fatima, and B. K. Panigrahi, “Passive Thermography Based Bearing Fault Diagnosis using Transfer Learning with Varying Working Conditions,” IEEE Sens. J., 2022, doi: 10.1109/JSEN.2022.3164430.
B. T. Kuhnell and J. S. Stecki, “CORRELATION OF VIBRATION, WEAR DEBRIS ANALYSIS AND OIL ANALYSIS IN ROLLING ELEMENT BEARING CONDITION MONITORING.,” Maint. Manag. Int., vol. 5, no. 2, pp. 105–115, 1985, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0022062570&partnerID=40&md5=aeedbb0e65835408dbabf1be8f596688
T. G. Habetler, R. G. Harley, R. M. Tallam, S.-B. Lee, R. Obaid, and J. Stack, “Complete current-based induction motor condition monitoring: Stator, rotor, bearings, and load,” in 8th IEEE International Power Electronics Congress, CIEP 2002, 2002, vol. 2002-January, pp. 3–8. doi: 10.1109/CIEP.2002.1216628.
L. Frosini, E. Bassi, A. Fazzi, and C. Gazzaniga, “Use of the stator current for condition monitoring of bearings in induction motors,” 2008. doi: 10.1109/ICELMACH.2008.4799991.
F. J. T. E. Ferreira, J. P. Trovão, and A. T. De Almeida, “Motor bearings and insulation system condition diagnosis by means of common-mode currents and shaft-ground voltage correlation,” 2008. doi: 10.1109/ICELMACH.2008.4800051.
Z. Yang, “Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis,” Shock Vib., vol. 2015, 2015, doi: 10.1155/2015/486159.
T. Ciszewski, A. Dzwonkowski, L. Swedrowski, and L. Gelman, “Novel condition monitoring of induction motor bearings via motor current signature analysis,” 2017. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029426539&partnerID=40&md5=f6c19a1122b64197aef3675fc51f46df
M. Entezami, C. Roberts, P. Weston, E. Stewart, A. Amini, and M. Papaelias, “Perspectives on railway axle bearing condition monitoring,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 234, no. 1, pp. 17–31, 2020, doi: 10.1177/0954409719831822.
C. M. Tarawneh, K. D. Cole, B. M. Wilson, and F. Alnaimat, “Experiments and models for the thermal response of railroad tapered-roller bearings,” Int. J. Heat Mass Transf., vol. 51, no. 25–26, pp. 5794–5803, 2008, doi: 10.1016/j.ijheatmasstransfer.2008.05.011.
K. D. Cole, C. M. Tarawneh, A. A. Fuentes, B. M. Wilson, and L. Navarro, “Thermal models of railroad wheels and bearings,” Int. J. Heat Mass Transf., vol. 53, no. 9–10, pp. 1636–1645, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.01.031.
J. Cuanang, C. Tarawneh, M. Amaro Jr., J. Lima, and H. Foltz, “Optimization of railroad bearing health monitoring system for wireless utilization,” 2020. doi: 10.1115/JRC2020-8060.
Menteri Perhubungan Republik Indonesia, “Peraturan Menteri Perhubungan Nomor PM 60 Tahun 2012 Tentang Persyaratan Teknis Jalur Kereta Api,” 2012.
F. Rozaq, W. Artha Wirawan, A. Zulkarnaen, Jamaludin, and H. Boedi Wahjono, “The Influence of Temperature and Lubrication Variation on the Dimension Change in Ring Compression Test Using Ansys Software,” J. Phys. Conf. Ser., vol. 1273, no. 1, 2019, doi: 10.1088/1742-6596/1273/1/012080.
J. R. Cookie and D. C. Davis, Applied Finite Element Analysis. New York: John Wiley & Sons, 1986.
C. R. Couch, “Comparative analysis of a heat sink using three different finite element models and validated experimentally,” Consult. Eng. RF Microw. Components Syst., 2013.
I. Widiyarta, “Simulasi Perubahan Prilaku Regangan Geser Material Rel Pada Perubahan Suhu Permukaan Kontak Akibat Beban Gelinding/Gesek,” J. Energi Dan Manufaktur, vol. 5, no. 1, pp. 1–6, 2011.
W. Artha Wirawan, A. Zulkarnain, H. Boedi Wahjono, Jamaludin, and A. Tyas Damayanti, “The Effect of Material Exposure Variations on Energy Absorption Capability and pattern of Deformation Material of Crash Box of Three Segments,” J. Phys. Conf. Ser., vol. 1273, no. 1, 2019, doi: 10.1088/1742-6596/1273/1/012081.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ir. Aco Wahyudi Efendi, ST., MT
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.